164 research outputs found

    Correlations between IGF-IR Expression and Clinicopathological Factors and Prognosis in Patients with Lung Adenocarcinoma

    Get PDF
    Background and objective The incidence of lung adenocarcinoma increases rapidly, and IGF-IR is the key mediator of several growth factors signal transduction, therefore it plays an important role in the proliferation and differentiation of cancer cell. The aim of this study is to detect the expression of IGF-IR in lung adenocarcinoma and to evaluate its implication for the clinicopathological factors and prognosis of patients with this disease. Methods The IGF-IR expression was detected by immunohistochemical staining. Correlations between IGF-IR expression with clinicopathological factors were analyzed using the Chi-squared test. The Kaplan-Meier method was used to calculate the overall patient survival rate, and the difference in survival curves was evaluated using a Log-rank test. Univariate and multivariate analysis was carried out using the Cox proportional-hazard model. Results In 126 cases of tumor sections tested, IGF-IR were detected in 89 cases. Statistical analysis revealed that the IGF-IR expression was related to tumor size and T stage, while there were no relations between IGFIR expression and age, gender, smoking, pathological stages, and differentiation. Cox analysis indicated that metastasis and chemotherapy efficacy were the prognostic factors in these patients, while IGF-IR expression was not the independent prognostic factor. Conclusion The IGF-IR expression is related to tumor size and T stage, while there is no relation between IGF-IR expression and prognosis

    Periodic and Chaotic Motions of a Two-Bar Linkage with OPCL Controller

    Get PDF
    A two-bar linkage, which is described in differential dynamical equations, can perform nonlinear behaviors due to system parameters or external input. As a basic component of robot system, the investigation of its behavior can improve robot performance, control strategy, and system parameters. An open-plus-close-loop (OPCL) control method therefore is developed and applied to reveal and classify the complicated behaviors of a two-bar linkage. In this paper, the conception and stability of OPCL are addressed firstly. Then it is applied to the dynamical equations of two-bar linkage. Different motions including single-periodic, multiple-periodic, quasiperiodic, and chaotic motions are unfolded by numerical simulations when changing the controller parameters. Furthermore, the obtained chaotic motions are sorted out for qualitative and quantificational study using Lyapunov exponents and hypothetic possibilities of surrogate data method

    Fast Fourier transport analysis of surface structures fabricated by laser interference lithography

    Get PDF
    This paper presents an FFT (fast Fourier transform) analytical method for the study of surface structures fabricated by laser interference lithography (LIL). In the work, the FFT analytical method combined with Gaussian fitting is used to determine the periods and pattern distributions of surface structures from frequency spectra. For LIL, the processing parameters of incident and azimuth angles can be obtained corresponding to the period and pattern distribution. This work facilitates the detection of micro- and nano-structures, the analysis of pattern distribution in engineering, and the processing error analysis of LIL

    Baseline model based structural health monitoring method under varying environment

    Get PDF
    Environment has significant impacts on the structure performance and will change features of sensor measurements on the monitored structure. The effect of varying environment needs to be considered and eliminated while conducting structural health monitoring. In order to achieve this purpose, a baseline model based structural health monitoring method is proposed in this paper. The relationship between signal features and varying environment, known as a baseline model, is first established. Then, a tolerance range of the signal feature is evaluated via a data based statistical analysis. Furthermore, the health indicator, which is defined as the proportion of signal features within the tolerance range, is used to judge whether the structural system is in normal working condition or not so as to implement the structural health monitoring. Finally, experimental data analysis for an operating wind turbine is conducted and the results demonstrate the performance of the proposed new technique

    Competition of electronic correlation and reconstruction in La1-xSrxTiO3/SrTiO3 heterostructures

    Full text link
    Electronic correlation and reconstruction are two important factors that play a critical role in shaping the magnetic and electronic properties of correlated low-dimensional systems. Here, we report a competition between the electronic correlation and structural reconstruction in La1-xSrxTiO3/SrTiO3 heterostructures by modulating material polarity and interfacial strain, respectively. The heterostructures exhibit a critical thickness (tc) at which a metal-to-insulator transition (MIT) abruptly occurs at certain thickness, accompanied by the coexistence of two- and three-dimensional (2D and 3D) carriers. Intriguingly, the tc exhibits a V-shaped dependence on the doping concentration of Sr, with the smallest tc value at x = 0.5. We attribute this V-shaped dependence to the competition between the electronic reconstruction (modulated by the polarity) and the electronic correlation (modulated by strain), which are borne out by the experimental results, including strain-dependent electronic properties and the evolution of 2D and 3D carriers. Our findings underscore the significance of the interplay between electronic reconstruction and correlation in the realization and utilization of emergent electronic functionalities in low-dimensional correlated systems

    BAC-pool sequencing and analysis confirms growth-associated QTLs in the Asian seabass genome

    Get PDF
    The Asian seabass is an important marine food fish that has been cultured for several decades in Asia Pacific. However, the lack of a high quality reference genome has hampered efforts to improve its selective breeding. A 3D BAC pool set generated in this study was screened using 22 SSR markers located on linkage group 2 which contains a growth-related QTL region. Seventy-two clones corresponding to 22 FPC contigs were sequenced by Illumina MiSeq technology. We co-assembled the MiSeq-derived scaffolds from each FPC contig with error-corrected PacBio reads, resulting in 187 sequences covering 9.7 Mb. Eleven genes annotated within this region were found to be potentially associated with growth and their tissue-specific expression was investigated. Correlation analysis demonstrated that SNPs in ctsb, skp1 and ppp2ca can be potentially used as markers for selecting fast-growing fingerlings. Conserved syntenies between seabass LG2 and five other teleosts were identified. This study i) provided a 10 Mb targeted genome assembly; ii) demonstrated NGS of BAC pools as a potential approach for mining candidates underlying QTLs of this species; iii) detected eleven genes potentially responsible for growth in the QTL region; and iv) identified useful SNP markers for selective breeding programs of Asian seabass
    • …
    corecore